Showing posts with label Biotech News. Show all posts
Showing posts with label Biotech News. Show all posts
Friday, June 10, 2016
Monday, March 7, 2016
Wednesday, November 25, 2015
Wednesday, November 18, 2015
Thursday, October 15, 2015
Monday, November 3, 2014
Saturday, October 11, 2014
Thursday, March 13, 2014
Monday, March 3, 2014
Saturday, February 22, 2014
Thursday, February 20, 2014
Sunday, January 26, 2014
Biotechnology Will Be Bigger Than IT Sector says Sam Pitroda, Advisor to Prime Minister, Govt. of India.
Sam Pitroda, advisor to the prime minister on public information infrastructure and innovation, Wednesday hailed Biotechnology as being "pervasive" and said the sector has the capacity to be bigger than IT.
"Biotech could be bigger than IT (Information Technology) in terms of Export," he said.
"(With Biotech) we can expedite the process of development in Pharmaceuticals, Environment, Processes and many other things,"
Pitroda said at an event marking the launch of the first phase of a plan developed by the Biotechnology Industry Research Assistance Council (BIRAC), which aims to foster innovation and techno-entrepreneurship in Indian universities.
The initiative, in collaboration with the Biotechnology industry, leverages the University Innovation Cluster (UIC) and Cluster Innovation Centre (CIC) model recommended by the National Innovation Council (NIC).
The UIC model seeks to build an innovation network with multiple stakeholders and CICs, identify and forge partnerships with institutions of interest, further facilitating the innovation culture.
Under the initiative, an innovation centre in Biotechnology hosted in the university will be the nerve centre to manage the UIC activities.
As part of the project, five Indian universities - Anna University, Chennai; Punjab University, Chandigarh; Tamil Nadu Agricultural University, Coimbatore; University of Rajasthan, Jaipur and University of Agricultural Sciences, Dharwad - have been chosen to participate in the first phase.
"Each university is a leader in Biotechnology, who has got the right connections with the industry. So, we will set up a pre-incubation centre there which will act as the nerve centre for budding student entrepreneurs," a member of the team said.
The cluster innovation centre in Biotechnology will give students technology mentoring, along with mentoring in entrepreneurship development and support in new venture creation.
"We call it a cluster because these universities will network with all other institutes and industries in the region," she said.
The initiative, which intends to create a industry ready workforce, is mainly meant for selected post-masters and post-doctoral student entrepreneurs.
Saturday, January 11, 2014
Gene Therapy Can Protect Against HIV
An Introduced Gene Conveys Long-Lived Resistance To HIV Infection In Mice
Gene therapy, an approach most commonly explored for curing chronic genetic diseases such as cystic fibrosis, may also prove practical for disease prevention. In research published today inNature, scientists in California show that a single injection — which inserted the DNA for an HIV-neutralizing antibody into the muscle cells of live mice — completely protected the animals against HIV transmission.
The road to a vaccine against HIV has proved to be far longer than originally anticipated. More than 2 million adults are newly infected with HIV every year and, nearly three decades after the virus was first identified, researchers haven’t found a reliable way to prevent infection. The classic vaccine approach, which uses all or part of an inactivated virus to induce immunity, has yielded little success because HIV has managed to disguise most of the easily-recognised external structures that antibodies would target. Researchers have thus had a tough time finding a molecule that can induce even moderately broad responses against the virus in all its different mutations. So although it might sound extreme to use gene therapy as a preventative treatment for HIV/AIDS, the method could provide a much-needed alternative.
David Baltimore, a virologist and HIV researcher at the California Institute of Technology in Pasadena, and his colleagues used a genetically altered adenovirus to infect muscle cells and deliver DNA that codes for antibodies isolated from the blood of people infected with HIV. The DNA is incorporated into the muscle cells’ genome and programs the cells to manufacture the antibody, which is then secreted into the bloodstream. The tactic builds on earlier work by scientists at the Children’s Hospital of Philadelphia in Pennsylvania, who in 2009 first described the effectiveness of this technique in preventing transmission of simian immunodeficiency virus, which is similar to HIV but infects monkeys.
As for the rationale for using gene therapy for HIV: “This is something way out of the ordinary, and it’s perfectly reasonable to say that there’s no reason to do it if there’s an alternative," says Baltimore. "But if there’s no alternative — and that’s where we’re at today — then we should be thinking of new ways to protect people.”
Dennis Burton, an immunologist at the Scripps Research Institute in La Jolla, California, who has developed a number of antibodies against HIV, agrees. “Obviously, the best thing of all is a vaccine. That’s a tried-and-tested method that carries very few risks. But if that doesn’t work, what’s our fall-back position?” he asks. “We have these antibodies, and we have them available now. If this works in humans, and that’s a reasonable supposition, you’d have something you can do now.”
Prolonged Protection
Baltimore and his colleagues tested five different broadly neutralizing antibodies, one at a time, in mice with humanized immune systems. Two of the antibodies, called b12 and VRC01, proved completely protective — even when the mice received doses of HIV that were 100 times higher than a natural infection. After 52 weeks, the levels of antibody expression remained high, suggesting that a single dose would result in long-lasting protection. “We showed that you can express protective levels of antibodies in a mammal and have that expression last for a long period of time,” Baltimore says. “It sets the stage for human trials.”
Providing patients with periodic doses of these antibodies throughout their lifetime would be safer than coaxing antibody production from muscle cells, but it would be far from cost-effective. The gene-therapy approach, by contrast, recruits muscle cells to act as antibody factories and could be administered using a single intramuscular shot.
Experts in the field are cautiously optimistic. “Mice and monkeys don’t always tell the truth. It’s a really interesting idea, and it should be assessed in clinical trials,” says Wayne Koff, senior vice-president for research and development at the International AIDS Vaccine Initiative in New York. “Until someone shows that we can make these broadly neutralizing antibodies with a [classic] vaccine, I think this is an important concept that should be supported.”
But both Burton and Koff caution that gene therapy comes with its own set of problems. Because the antibody DNA is permanently inserted into the genome, there’s no way to turn it off if someone has an immune reaction against the antibodies. But it won't be known whether such side effects exist until the method is tested in people, something that Baltimore aims to do in the next few years. The researchers at the Children’s Hospital of Philadelphia, meanwhile, hope to get the first round of human trials of their technique started before the end of 2012.
Friday, April 26, 2013
Wednesday, January 16, 2013
Sunday, January 6, 2013
Saturday, January 5, 2013
Subscribe to:
Posts (Atom)